Effects of Multi-Walled Carbon Nanotubes on The Mechanical Properties of Glass/Polyester Composites

Authors

  • A. Saeedi Composites Research Laboratory, Center of Excellence in Experimental Mechanics and Dynamics, Department of Mechanical Engineering, Iran University of Science and Technology
  • M. Chitsazzadeh Nanocomposites Research Laboratory, Iran Composites Institute, Iran University of Science and Technology
  • M. Mehrdad Shokrieh Composites Research Laboratory, Center of Excellence in Experimental Mechanics and Dynamics, Department of Mechanical Engineering, Iran University of Science and Technology
Abstract:

Excellent mechanical properties of carbon nanotubes (CNTs) make them outstanding candidate reinforcements to enhance mechanical properties of conventional composites. The glass/polyester composites are widely used in many industries and applications. Improving the mechanical properties of such composites with addition of CNTs can increase their applications. In this research, multi-walled carbon nanotube (MWCNT) at different weight ratios (0.05, 0.1, 0.3, 0.5 wt.%) were added to chopped strand mat (CSM)/Polyester composites. Mechanical stirring with the aid of sonication technique were used to achieve a good dispersion state of MWCNTs in the polymeric matrix. The specimens were fabricated by the hand layup method. It is assumed that a high level of dispersion in the preparation stage may lead to better mechanical properties of the nanocomposite. Scanning electron microscopy (SEM) was employed to determine the dispersion state of carbon nanotubes in the matrix. Mechanical tests (tensile and flexural) were performed in order to evaluate the effects of adding MWCNT on CSM/Polyester composites. The results exhibit improvements in flexural strength while the values of tensile strength do not show significant changes. Although addition of filler at all above ratios increased the flexural strength, introducing only 0.05 wt.% MWCNT into the CSM/Polyester composites enhanced the flexural strength by 45%. Moreover, improvements in Young's and flexural moduli were observed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

effects of multi-walled carbon nanotubes on the mechanical properties of glass/polyester composites

excellent mechanical properties of carbon nanotubes (cnts) make them outstanding candidate reinforcements to enhance mechanical properties of conventional composites. the glass/polyester composites are widely used in many industries and applications. improving the mechanical properties of such composites with addition of cnts can increase their applications. in this research, multi-walled carbo...

full text

investigation of the electronic properties of carbon and iii-v nanotubes

boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...

15 صفحه اول

The Effects of Functionalized Multi-walled Carbon Nanotube on Mechanical Properties of Multi-walled Carbon Nanotube/Epoxy Composites

The mechanical properties of the multi-walled carbon nanotube (MWCNT)/epoxy composites affected by carboxyl and amino functionalized MWCNT are investigated. Tensile tests of the specimens were carried out to obtain mechanical properties of MWCNT/epoxy composites for various weight-percents (wt %) of MWCNTs. In order to properly predict the mechanical properties of MWCNT reinforced epoxy composi...

full text

Mechanical properties of multi-walled carbon nanotubes reinforced polymer nanocomposites

Carbon nanotubes (CNTs ) are considered to be one of the novel reinforcement for developing advanced nanocomposites due to their outstanding thermo-mechanical properties. Multi-walled carbon nanotubes (MWCNTs ) are developed by arc discharge method. To enhance the dispersion of CNTs in polymer matrix, CNTs are modified with chemical treatment and processed by ultrasonication process. Surface ch...

full text

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

full text

On the Mechanical Properties of Chiral Carbon Nanotubes

Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 45  issue 1

pages  19- 22

publication date 2012-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023